Algebraic Varieties and Compact Complex Spaces

نویسنده

  • B. G. MOISHEZON
چکیده

It appears that if dimcZ = a. dim X > 2, one may consider X as an algebraic variety too but in some new sense. One can generalize the conception of the abstract variety of A. Weil by substituting the etale topology of Grothendieck for the topology of Zariski. One gets the objects which M. Artin called "etale schemes" and the author called "minischemes". Later, M. Artin introduced the term "algebraic space" and I use that term in this report. One of the definitions of the algebraic space over the scheme S is the following :

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 Fabrizio Catanese Universität Bayreuth

We introduce a new equivalence relation for complete algebraic varieties with canonical singularities, generated by birational equivalence, by flat algebraic deformations (of varieties with canonical singularities), and by quasi-´ etale morphisms, i.e., morphisms which are unramified in codimen-sion 1. We denote the above equivalence by A.Q.E.D. : = Algebraic-Quasi-´ Etale-Deformation. A comple...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

7 M ay 2 00 2 On the L 2 – Stokes theorem and Hodge theory for singular algebraic varieties

For a projective algebraic variety V with isolated singularities, endowed with a metric induced from an embedding, we consider the analysis of the natural partial differential operators on the regular part of V . We show that, in the complex case, the Laplacians of the de Rham and Dolbeault complexes are discrete operators except possibly in degrees n, n±1, where n is the complex dimension of V...

متن کامل

A pr 1 99 8 Chern classes of modular varieties

1.1. Suppose X is a compact n-dimensional complex manifold. Each partition I = {i1, i2, . . . , ir} of n corresponds to a Chern number c (X) = ǫ(c1(X)∪c2(X)∪. . .∪cr(X)∩[X]) ∈ Z where c(X) ∈ H(X;Z) are the Chern classes of the tangent bundle, [X] ∈ H2n(X;Z) is the fundamental class, and ǫ : H0(X;Z) → Z is the augmentation. Many invariants of X may be expressed in terms of its Chern numbers, and...

متن کامل

Algebraic Cocycles on Normal, Quasi-Projective Varieties

Blaine Lawson and the author introduced algebraic cocycles on complex algebraic varieties in [FL-1] and established a duality theorem relating spaces of algebraic cocycles and spaces of algebraic cycles in [FL-2]. This theorem has non-trivial (and perhaps surprising) applications in several contexts. In particular, duality enables computations of “algebraic mapping spaces” consisting of algebra...

متن کامل

Multiplicative Models for Configuration Spaces of Algebraic Varieties

W. Fulton–R. MacPherson [15] found a Sullivan dg-algebra model for the space of n-configurations of a smooth compact complex algebraic variety X . I. Kř́ıž [16] gave a simpler model, En(H), depending only on the cohomology ring, H := H X . We construct an even simpler and smaller model, Jn(H). We then define another new dg-algebra, En( o H), and use Jn(H) to prove that En( o H) is a model of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010